Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hongming Zhang,* Sudershan R. Gondi and David Y. Son

Department of Chemistry, Southern Methodist University, Dallas, TX 75275, USA

Correspondence e-mail: hzhang@smu.edu

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.011 \AA$
R factor $=0.062$
$w R$ factor $=0.172$
Data-to-parameter ratio $=16.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Poly[bis (μ_{3}-benzyloxyiminoacetato)nitratotrisilver(I)]

The title compound, $\left[\mathrm{Ag}_{3}\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{NO}_{3}\right)_{2}\left(\mathrm{NO}_{3}\right)\right]_{n}$, exists as a three-dimensional framework and possesses a trinuclear unit consisting of three Ag atoms bridged by two benzyloxyiminoacetate monoanions via N and O atoms, one Ag atom having also a monodentate nitrate ligand. The three Ag atoms are independent and exist in different coordination environments.

Comment

The structure of the title compound, (I), was investigated as part of ongoing structural studies of organometallic complexes constructed from multidentate heterocyclic ligands and transition metal ions (Siaw-Lattey et al., 2005; Kalra et al., 2004; Sengupta et al., 2004). Despite the known donor properties of nitrogen in a variety of ligand structures, little has been reported concerning the potential ligand properties of oxime ethers (Brunner et al., 2003). Oxime ethers are stable and are relatively simple to synthesize and thus it was of interest to us to explore their ligand properties.

(I)

The title compound was obtained by the reaction of benzyloxyiminoacetic acid and silver nitrate. As shown in Fig. 1, there are three independent AgI atoms, two deprotonated benzyloxyiminoacetate monoanions (OBnIA) and one nitrate group in the structural asymmetric unit.

Fig. 2 presents the extended structure of (I). The Ag 1 atom is coordinated by two N atoms from two different OBnIA ligands and atom O12 from one of these ligands. Atom O32 of the second OBnIA ligand is linked to another Ag atom $(\mathrm{Ag} 2)$. Adding two more oxygen linkages, O33 ${ }^{\text {ii }}$ [symmetry code: (ii) $-x,-y, 1-z]$ from a symmetry-related OBnIA ligand and $\mathrm{O} 1^{i}$ from the nitrate anion [symmetry code: (i) $x, \frac{1}{2}-y, \frac{1}{2}+z$], a distorted trigonal coordination environment about Ag 2 is formed. The bond distances of Ag 1 and Ag 2 to relevant N or

Received 2 June 2006
Accepted 12 June 2006

Figure 1
A view of the asymmetric unit of polymer (I), with displacement ellipsoids drawn at the 50% probability level. H atoms are presented as open circles with arbitrary radii. The dashed line indicates an $\mathrm{Ag} \cdots \mathrm{Ag}$ interaction.

A view of the extended structure of polymer (I), with displacement ellipsoids drawn at the 40% probability level. H atoms have been omitted for clarity. The coordination of the Ag atoms is shown completed with symmetry-equivalent atoms. Dashed lines indicate $\mathrm{Ag} 1 \cdots \mathrm{Ag} 2$ and $\mathrm{Ag} 3 \cdots \mathrm{Ag} 3 \mathrm{C}$ interactions. [Symmetry codes: (A) $-x,-y+1,-z+1$; (B) $x,-y+\frac{1}{2}, z-\frac{1}{2}$; (C) $-x, y+\frac{1}{2},-z+\frac{3}{2}$; (D) $-x,-y,-z+1$; (E) x, $-y+\frac{3}{2}, z+\frac{1}{2} ;(\mathrm{F})-x, y+\frac{1}{2},-z+\frac{1}{2} ;(\mathrm{G}) x,-y+\frac{1}{2}, z+\frac{1}{2}$.]

O atoms (Table 1) are very similar to the analogous bond lengths in related structures (Chen et al., 2004; Feazell et al., 2004; Zheng et al., 2004). The distortion of the trigonal geometry about Ag 1 is basically caused by the bidentate bonding which forces the chelating angle $\mathrm{N} 9-\mathrm{Ag} 1-\mathrm{O} 12$ to be narrowed. Unlike Ag 1 and $\mathrm{Ag} 2, \mathrm{Ag} 3$ is essentially linearly
coordinated, defined by O12 and O13 ${ }^{\text {iiii }}$ [symmetry code: (iii) $-x, 1-y, 1-z]$. Ag3 also interacts weakly with an inversionrelated $\mathrm{Ag} 3^{\text {iii }}$, and a similar interaction exists between Ag 1 and Ag 2 (Table 1). Via the bridged anions, as well as the inversion symmetry operation, the infinitely interwoven network is obtained.

Experimental

Benzyloxyiminoacetic acid ($100 \mathrm{mg}, 5.5 \mathrm{mmol}$) was dissolved in tetrahydrofuran (5 ml), to obtain a clear solution. An aqueous solution of silver nitrate ($95 \mathrm{mg}, 5.5 \mathrm{mmol}$) was then added dropwise very slowly to form two layers. Placing the reactants in the dark without any disturbance for several days resulted in the formation of crystals (yield: $122 \mathrm{mg}, 63 \%$; m.p. 421-423 K).

Crystal data

$\left[\mathrm{Ag}_{3}\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{NO}_{3}\right)_{2}\left(\mathrm{NO}_{3}\right)\right]$
$Z=4$
$M_{r}=741.95$
Monoclinic, $P 2_{1} / c$
$D_{x}=2.401 \mathrm{Mg} \mathrm{m}^{-3}$
$a=23.996$ (2) А
$b=7.0691$ (7) A
$c=12.2522$ (12) \AA
$\beta=99.047$ (2) ${ }^{\circ}$
$V=2052.5(4) \AA^{3}$
Mo $K \alpha$ radiation
$\mu=2.89 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Thin plate, colourless
$0.31 \times 0.27 \times 0.04 \mathrm{~mm}$

Data collection

Bruker APEX diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
$T_{\text {min }}=0.463, T_{\text {max }}=0.903$
17961 measured reflections 4958 independent reflections 3988 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.034$ $\theta_{\max }=28.4^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0947 P)^{2}\right. \\
\quad+8.7822 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=2.58 \mathrm{e}^{-3} \AA^{-3} \\
\Delta \rho_{\min }=
\end{array}-1.78 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.062$
$w R\left(F^{2}\right)=0.172$
$S=1.05$

H -atom parameters constrained
Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

$\mathrm{Ag} 1-\mathrm{N} 29$	$2.322(5)$	$\mathrm{Ag} 2-\mathrm{O} 33^{\mathrm{ii}}$	$2.421(6)$
$\mathrm{Ag} 1-\mathrm{N} 9$	$2.405(5)$	$\mathrm{Ag} 2-\mathrm{O} 32$	$2.436(5)$
$\mathrm{Ag} 1-\mathrm{O} 12$	$2.456(5)$	$\mathrm{Ag} 3-\mathrm{O} 12$	$2.219(5)$
$\mathrm{Ag} 1-\mathrm{O} 1$	$2.594(6)$	$\mathrm{Ag} 3-\mathrm{O} 3^{\text {iii }}$	$2.233(5)$
$\mathrm{Ag} 1 \cdots \mathrm{Ag} 2$	$3.3509(9)$	$\mathrm{Ag} 3 \cdots \mathrm{Ag} 3^{i i i}$	$3.2184(19)$
$\mathrm{Ag} 2-\mathrm{O} 1^{\mathrm{i}}$	$2.403(6)$		
$\mathrm{N} 29-\mathrm{Ag} 1-\mathrm{N} 9$	$150.97(18)$	$\mathrm{O} 12-\mathrm{Ag} 1-\mathrm{O} 1$	$83.22(18)$
$\mathrm{N} 29-\mathrm{Ag} 1-\mathrm{O} 12$	$136.32(18)$	$\mathrm{O1}^{\mathrm{i}}-\mathrm{Ag} 2-\mathrm{O} 33^{\text {ii }}$	$90.9(2)$
$\mathrm{N} 9-\mathrm{Ag} 1-\mathrm{O} 12$	$66.62(16)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Ag} 2-\mathrm{O} 32$	$138.5(2)$
$\mathrm{N} 29-\mathrm{Ag} 1-\mathrm{O} 1$	$95.96(19)$	$\mathrm{O} 33^{\text {ii }}-\mathrm{Ag} 2-\mathrm{O} 32$	$109.8(2)$
$\mathrm{N} 9-\mathrm{Ag} 1-\mathrm{O} 1$	$105.85(19)$	$\mathrm{O} 12-\mathrm{Ag} 3-\mathrm{O} 13^{\text {iii }}$	$140.4(2)$

Symmetry codes: (i) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (ii) $-x,-y,-z+1$; (iii) $-x,-y+1,-z+1$.
H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.95-0.98 \AA$, and refined as riding with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier).

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

metal-organic papers

The authors thank the National Science Foundation (grant No. 0092495) and the Welch Foundation (grant No. N-1375) for support of this work.

References

Bruker (1997). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Brunner, H., Schönherr, M. \& Zabel, M. (2003). Tetrahedron Asymmetry, 14, 1115-1122

Chen, Y.-B., Kang, Y., Qin, Y.-Y., Li, Z.-J., Cheng, J.-K. \& Yao, Y.-G. (2004). Acta Cryst. C60, m263-m265
Feazell, R. P., Carson, C. E. \& Klausmeyer, K. K. (2004). Acta Cryst. C60, m598-m600.
Kalra, M. K., Zhang, H. \& Son, D. Y. (2004). Inorg. Chem. Commun. 7, 10191022.

Sengupta, P., Zhang, H. \& Son, D. Y. (2004). Inorg. Chem. 43, 18281830.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siaw-Lattey, C., Zhang, H. \& Son, D. Y. (2005). Polyhedron, 24, 785-790.
Zheng, Y. \& Wang, S.-L. (2004). Acta Cryst. C60, m278-m279.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

